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Several properties of the Laplace transform, used in constructing solutions of 
boundary-value problems of thermal conductivity on the basis of equations with 
memory, are established. 

The hyperbolic transport equation and equations with memory are currently used in treat- 
ing short-lived high-intensity processes of heat and mass transfer [1-4]. Since a large number 
of solutions of boundary-value problems has been accumulated for various geometries, it is 
advisable to use them in solving boundary-value problems of thermal conductivity on the basis 
of more complicated transport laws. With this purpose we derive below several properties of 
the Laplace transform, by means of which relationships are established between solutions of 
boundary-value problems of thermal conductivity using various transport laws. 

Several Properties of the Laplace Transform. For an arbitrary function u1(t) we intro- 
duce the direct L~ and inverse L~(t) Laplace transforms in the function ~(p): 

I ( exp [~ (p) t] U~ [~ (p)] d~ (p), 
u~ (t) = L~G (~) = 2~ 

o--f~ 

U~ [cp (p)] = L~u~ (l) = i exp [-- r (p) t] u~ (t) dr. 
0 

(1) 

The additional index (t) at the operator L~ I of the inverse transform indicates that it is 
taken over the argument t, enclosed in the circular brackets. The function u1(t) must sat- 
isfy requirements imposed on the inverse transform, and the analytic function ~ (p) -- the 
imaging condition, i.e., Re[~(p)] >~ for Re(p) > ~, where ~ is the growth index of the func- 
tion u1(t). Transform (!) can be considered as a formal replacement of p by ~ in the or- 
dinary Laplace transforms Lp and L~; therefore, all properties of the ordinary Laplace 
transforms are valid for L ~ and L~ I. 

If in the Laplace transform U(p) = Lpu of the function u(t) one replaces the variable 
p by an arbitrary function ~=~(p) by means of the identity 

U (p) -- U [p (qD)] = U~ [~ (p)], 

the originals u(t) and u1(t) of these transforms are related by 

u(t) =- i ut(g)a(t, ~c)d~, (2) 
0 

where 

a(t ,  T) = L-Ip(O (exp [-- ~ (p) T]}. (2a)  

Here the analytic function ~(p) satisfies the imaging condition, and the integral is as- 
sumed to be uniformly convergent for t6[0, oo). Relationship (2) is easily proved, applying 
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to it the Laplace transform ~, changing the order of integration, and taking into account 
Eq. (2a): 

U ( p ) =  Lp(t) ut(T)a(t, "Od '~=.  ui(T) d'r .[ exp(--pt)a(t, "Odt= exp[--ep(p)~lut('Od'~= L~ui = Ut[q~(P)]. 
0 0 0 0 

The function u1(t), in turn, can be expressed in terms of u(t) by means of the equation 

co 

u,(t)  = f "(~) ao (t, ~) d% 
0 

ao(t, T) = L~-(~ {exp [-- p(rp)Tl}. 

(3~ 

We write down the generalized rule of Laplace transform multiplication. Let two trans- 
forms UI(p) and Gx(p) and two analytic functions @ (p) and ~(p) be given, satisfying the map- 
ping condition. The following relation is then valid: 

0 0 0 

(4) 

where 

-1 {exp [--  q~(p) ~1}; a('G ~) = Lp(~) 

- - 1  b~ (t - -  T, O) = Lp(~_~) {exp [ - -  ~l (P) Ot}. 
(4a) 

Relations (4), (4a) are proved by applying the Borel theorem and Eqs. (2), (2a) under the 
same assumptions. Putting n(P) = p, relations (4), (4a) transform to the Efros transform, 
written in a somewhat different form: 

1 

�9 0 0 

Applying mathematical induction, the Borel convolution theorem, and Eqs. (2), (4), one can 
write down an equation for the generalized product of several transforms. Using the Laplace 
transform properties and Eq. (2), one can derive other properties, useful for practical 
search of originals. Thus, applying Eq. (2) and the convolution theorem, we write down an 
expression for the original of the following transform: 

u(t) = L;'U, [rh (p) -4- cp2 (p)] = i u, ('0 a(t, "0 d% 
0 

t 

a ( t ,  ~) = .( at (~, ~) a~ (t - -  ~, T) d~, 
0 

ai (~, T) - '  = Lp(~) {exp [--  cp~ (p) ~]}, i = 1, 2, 

(5) 

which we will need in studying the behavior of originals for short times. The equations ob- 
tained are useful both for practical search of originals, and for constructing solutions of 
thermal conductivity problems with memory. 

Relation between Thermal Conductivity Problems, Based on Various Transport Laws. Prob- 
lems of thermal conductivity have been considered lately, based not only on the linear Fou- 
rier transport law: 

Xo v T  ' 
q------ l (6) 
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but also on the linearized relations describing transport processes with thermal memory [i, 
2]. We write them, as well as (6), in dimensionless form: 

Xo )~i(0)vT ;% i d~'(F~176176 M)dFo' ,  
q-- l l . d Fo' 

0 

e = e0 + PoCo {c, (0) i dc, (Fo') 
T +  " dFo' 

o 

T(Fo--  Fo', M)dFo' }. 

(6a) 

Here %1(Fo) and c1(Fo) are the dimensionless relaxation functions of thermal flow and inter- 
nal energy. The case of the hyperbolic equation corresponds to a specific form of the relax- 
ation function [2]. From Eqs. (6) and the internal energy conservation law follow the equa- 
tions of thermal conductivity for the function u(Fo, M) = T(Fo, M) -- To, where To = T(0, M), 
corresponding to a different transport laws: 

Ou 12 
---- + au = ----b(Fo, M), (7) 

O Fo ;% 

i - -  i lZ 
0___~u __ de~(Fo') 0u(Fo Fo', M)dFo, + ~,(0)Au + dX,(Fo') Au(Fo--Fo' ,  M)dFo'=----b(Fo,  M), 

- -e ,  (0) 0Fo' . dFo' 0Fo l dFo' ~0 (7a) 
0 0 

where u(0,  M) = 0 and M i s  a po in t  of space.  I f  the  boundary-va lue  problem of thermal  con- 
d u c t i v i t y  i s  solved for  the  r eg ion  D wi th  boundary F, one of the  fo l l owing  two boundary con- 
d i t i o n s  must be a s s igned :  

u(Fo, M ) =  Uo (Fo, M), m El', (8) 

q (Fo, M) = qo (Fo, M), M E r .  (9> 

Here uo and qo are the temperature of the medium and the external thermal flow. 

Applying the Laplace transform to Eq. (7), we write in the mapping region 

a u  (p, M ) -  ~ (p) u (p, M) = - - -  
[2 

~o B (p, M), M q D, (10) 

where 

q~(p) = p; B(p, M)----Lpb(Fo, M); (10a) 

(p) = pC, (p)lA, (p); B (p, M) -- Lvb (Vo, M) 
pA, 60) ( 10b ) 

Transforming in Eqs. (I0), (10b) from the variable p to the function ~ (p) in the source 
transforms, and solving by means of the identity B(p, M) = B1[~(p), M], U(p, M) = UI[~(p), 
M], for the mapping UI (~, M) Eq. (i0) acquires the same form as in the case of the Fourier 
transport law, but with a source BI(~, M): 

AU, (% M) -- qDU, (% M) -- 
12 

B,(% MJ, MED. ( l l )  

The solution of thermal conductivity problems without boundary conditions (such as finding 
potentials, solutions for the exact instantaneous source, etc.) is completely determined by 
Eq. (ii). Applying Eqs. (2), (2a) to the mapping U1[~(p), M], we obtain a solution of the 
original problem of thermal conductivity for Eqs. (7a) in form of the integral 

u (Fo, M) ---- i ui (Fo', M) a (Fo, Fo') d Fo', 
0 
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a(Fo, Fo ' )=  L~o){exp [--qD(p)Fo']}. (12) 

Thus, the solution u(Fo, M) for the equation of thermal conductivity with a memory is deter- 
mined by the solution ux of a problem of the same type for the ordinary equation of thermal 
conductivity (7) with a respective change of the source and the shape of relaxation functions, 
on which the second factor in the integral depends. To obtain the function UI (~, M) in the 
case of a homogeneous Eq. (7) it is sufficient to formally replace p by ~ in the transform 
solution for the usual equation of thermal conductivity, i.e., the function ul (Fo, M) is the 
solution of the same problem for the parabolic equation of thermal conductivity. Potentials 
were derived by the same principle for the hyperbolic equation of thermal conductivity [5]. 
In the case of an equation with a source one can write by means of Eq. (3) an expression, 
relating the equivalent source bo(Fo, M) of the parabolic equation of thermal conductivity 
with the source b(Fo, M) of Eq. (7a) with thermal memory 

bo (Fo, M) = . ao (Fo, Fo') .t b (Fo", M) m~ (Fo' -- Fo") d Fo" d Fo', 
0 0 

ao (Fo, Fo') = L$(~Vo) {exp [-- p (~) Fo']}, (13) 

m,(Fo Fo') _, { 1 } 
- -  = Lp(vo--Vo') pA,(p) " 

The boundary condition (8) has in the mapping region an identical form for (8a), (8b): 

U(p,  M)=U0tP, M), M 6 F ,  (14) 

and the boundary condition (9) of the second kind can be written as follows, taking into ac- 
count Eq. (6): 

~o aU (p, M) 
t an =s (p )  Qo(p, M), ME/',  (15) 

where according to the transport law 

s (p) = 1, (15a) 

s (p) = 1/pA, (p), (15b) 

and n is the internal normal to the boundary F. The solution U(p, M) of the boundary-value 
problem is determined in the mapping region for the Fourier transport law by Eqs. (i0), (10a) 
and boundary condition (14) [or (15), (15a)]. Transforming in boundary conditions (14) [or 
(15), (15b)] from the variable p to the function ~ (p) 

U, [m (P), M] = Uo (p, M) = Uo~ [qD (p), M], M E F, (16) 

where 

ko au~ [~(p), M] = Oo, [qD(p), M], M E F, 
l On (17) 

Qo~ [~ (p), M] = s [p (~1 Qo [p (~), M], ( t7a) 

then Eq. (ii) for mapping Ux together with boundary condition (16) [or (17)] for the case of 
heat transport with memory acquires the same form as for the Fourier transport law. The 
solution of the boundary-value problem for Eq. (7a) is primarily determined by Eq. (12), in 
which the function u1(Fo, M) is a solution of a boundary-value problem of the same type for 
the ordinary equation of thermal conductivity (7) with a source bo and with one of the cor- 
responding boundary conditions: 

ui(Fo, M)=  ; Uo(FO", M) a0fFo, Fo') dFo', M C F ,  (18) 
0. 
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i ~o Ou t (Fo, M) _ ao(Fo, Fo') q0(Fo", M) mi(Fo' - -  Fo") dFo'dFo". (19) 
l On s o 

Since a large number of problem solutions has been accumulated for the parabolic equation 
for various regions D, the representation (12) can facilitate analysis and solution of 
boundary-value problems for equations with thermal memory. We note that replacing p by ~ (p) 
in the mapping U(p, M) of the boundary-value problem for the homogeneous parabolic equation 
of thermal conductivity (7) is equivalent to including a thermal memory in Eq. (7a) and 
neglecting the effect of thermal memory in the boundary conditions. 

Equations (10)-(19) establish the reciprocal relation between thermal conductivity prob- 
lems with and without thermal memory. This analogy can be used as a correspondence of the 
original solutions, i.e., the use of Eqs. (12), (13), (18), and (19) for the very solution 
of problems of thermal conductivity, heat sources, and boundary conditions. This method is 
suitable for the functions ~(p), satisfying the mapping condition, and is effective for 
practical applications only for regions D having a convenient solution of the parabolic 
equation of thermal conductivity for arbitrary functions appearing in the boundary condition 
(and for an arbitrary form of the source, depending on coordinates and on time in solving 
problems with a source). More effective is the use of the correspondence between the trans- 
forms U(p, M) and UI(~, M) of the boundary-value problem for the ordinary equation of ther- 
mal conductivity and the equation with memory. In this case it is necessary to replace p in 
the Laplace transforms of the boundary conditions U(p, M) and 3U(p, M)/3n and in the source 
B(p, M) [see Eqs. (14), (15), and (i0)] by the inverse function p = p(~) [Eqs. (16), (17)], 
and replace p by ~ in the equation itself. As a result of this replacement the problem in 
the mapping L~ [by the function ~(p)] acquires the same form as for the ordinary equation 
of thermal conductivity. Solving the problem obtained by the ordinary operator method and 
using the operator L~ I, we find a solution u1(Fo, M); later we determine from Eq. (12) the 
solution of the boundary-value problem for the original equation with thermal memory. In 
this case the correspondence between the mapping can be used more flexibly and fully with 
available information on solutions of problems of similar type for the parabolic equation of 
thermal conductivity. It is important to note that this method of solving the problem makes 
it possible to use a function ~(p) not satisfying the mapping condition. 

Thus, in using the hyperbolic heat equation in a boundary-value problem of the first 
kind for a semiinfinite bar 

02U 02u Ou - - a - - = 0 ,  ~l=a[~ 2, xE[O, co), 
~ + 0-7- ox~ 

u(O, x)- 
Ou (0, x) 

Ot 
- o,  u (t ,  oo) = o ,  u (t ,  0) = Uo {t) 

(20) 

the function ~(p), being a complete second-order expression 9(p) = np2+p, does not sat- 
isfy the mapping condition. Therefore, one cannot return from the mapping problem U~ (9, x) = 
Uo[p(~)]exp[---x~/~a__]/~o(n~he re,on of originals LpIUI(~,x) by Eq. (12). Transforming 
to the function ~o(P) , .=. r it satisfies the mapping condition; therefore, from 
the mapping solution 

U, [q% (p), x] = Uo~ (*o) exp [ - -  xq% (p)l] /a] ,  

uo ,  (,po) = Uo [p (~D] ,  P ('P~) = - - -  
+ 1, 

2~ v ~q 4~1 ~ 

one can transform to the region of originals L~IU~(~o, x). Since in the given case 

a (t, ~) = L ~ )  {exp [ - -  r (P) ~1} ---- exp ( - -  ~/2 g - ~ )  8 (t - -  ~ T ) +  

(21) 

) 11 V t 2 -  ~ 
q- - ~-- exp (-- t12~l) , (22) 
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Eq. (12) acquires the following form: 

t/VW 

u (t, x) = exp ( - - /12n)  {.~ ( t lV '~,  x ) l V ~  + 2 V ~  
0 

ut (t, x) = L~  l Ui (~o, x). 

u~ (,, x) d~I 

(23) 

Equation (23) differs from the general form of the solution obtained in [6], but the results 
of solving specific problems by different methods are identical. For example, for a thermal 
shock, when uo(t) = ~(t), Eq. (23) is 

~x 
u (t, x) = exp ( - -  x/2a~) 6 (t - -  [~x) + - ~  exp (7- t12~) V..~2 _ [ ~x2 

This result coincides with the solution of the same problem by the equation of [6]. Many 
applications of the method developed here for various relaxation kernels will he given in 
later publications. The equations obtained can be applied to take into account the effect 
of thermal memory in various problems relating heat and mass exchange with thermoelasticity, 
in which the effect of mass exchange and mechanical characteristics on the temperature field 
are neglected. 

NOTATION 

Io, thermal conductivity; Po, density of the material; Co, heat capacity of the material, 
~, characteristic size of the region; M, point of the region; Fo, Fourier number; p, Laplace 
variable; l(Fo), c(Fo), relaxation functions of the thermal flux and of the internal energy; 
c1(Fo) = c(Fo)/copo, relative relaxation function of internal energy; l:(Fo) = l(Fo)/lo, 
relative relaxation function of the thermal flux; T, temperature; and 8, reciprocal of the 
heat propagation velocity. 
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